Fit individual LATER model to each dataset in a dataframe of datasets
Source:R/plot.R
individual_later_fit.Rd
Fit individual LATER model to each dataset in a dataframe of datasets
Usage
individual_later_fit(
df,
with_early_component = FALSE,
fit_criterion = "likelihood",
jitter_settings = list(n = 7, prop = 0.5, seed = NA, processes = 2)
)
Arguments
- df
A dataframe with columns:
time
,name
,promptness
, ande_cdf
- with_early_component
If
TRUE
, the model contains a second 'early' component that is absent whenFALSE
(the default).- fit_criterion
String indicating the criterion used to optimise the fit by seeking its minimum.
ks
: Kolmogorov-Smirnov statistic.neg_loglike
: Negative log-likelihood.
- jitter_settings
Settings for running the fitting multiple times with randomly-generated offsets ('jitter') applied to the starting estimates.
n
: How many jitter iterations to run (default of 7).prop
: The maximum jitter offset, as a proportion of the start value (default of 0.5).seed
: Seed for the random jitter generator (default is unseeded).processes
: Maximum number of CPU processes that can be used (default is 2).
Value
A dataframe with one row for each named dataset in df
and columns
equal to the LATER model parameters returned by fit_data$named_fit_params
Examples
# \donttest{
data <- rbind(
data.frame(name = "test", promptness = rnorm(100, 3, 1)),
data.frame(name = "test_2", promptness = rnorm(100, 1, 1))
)
fit_params <- individual_later_fit(data)
# }